二维随机变量在g上均匀分布 独立

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/30 16:56:23
二维随机变量在g上均匀分布 独立
概率论:如何求二维服从均匀分布 相互独立的随机变量的期望?

由独立性,从联合分布中求出边际分布(或概率密度),然后利用一维随机变量期望计算公式即可.也可以直接利用公式求,见图 至于第二问许多教材里都有类似的例题,如茆诗松教授等编写的概率论与数理统计教

设二维随机变量(X,Y)在区域G={(x,y)|0≦x≦1,x²≦y≦x}上服从均匀分布,求

由于∫(x^2,x)∫(0,1)f(x,y)dxdy=1,且f(x,y)是常数,算出f(x,y)=6,边缘密度f(x)=∫(x^2,x)6dy=6x^2-6x;边缘密度f(y)=∫(y^0.5,y)6

随机变量x与y相互独立,且他们分别在区间(-1,3)和(2,4)上服从均匀分布,则E(xy)=?

E(x)=(-1+3)/2=1,E(y)=(2+4)/2=3.而x与y相互独立,于是E(xy)=E(x)E(y)=3.

已知随机变量X,Y相互独立,N(1,9),Y在区间[0,4]上服从均匀分布,则E(X)=?,D(Y)=?,D(X+3Y)

1,4/3,15,其中运用公式相互独立的随机变量之和D(X+Y)=D(X)+D(Y).对于均匀分布D(x)=(b-a)²/12

已知随机变量X与Y相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=

均匀分布是我们学的重要分布的一种,一些结论性的公式最好记住;这里我给你说一下均匀分布的数值特征,E(X)=(b+a)/2D(X)=(b-a)^2/12对Xa=-1b=3对Ya=2b=4所以E(X)=1

设随机变量X在[0,1]上服从均匀分布,Y在[2,4]上服从均匀分布,且X与Y相互独立,则D(XY)=

均匀分布的期望方差公式都记得吧,套用一下就行了EX=1/2EY=3X与Y相互独立所以EXY=EXEY=3/2E(XY)²=∫(0到1)dx∫(2到4)1/2x²y²dy=28/

概率论与数理统计题目1.设随机变量X和Y独立,X在(0,2)上服从均匀分布,Y在(0,4)上服从均匀分布,则下列式子正确

1.f(x,y)=1/8,0≤x≤2,0≤y≤4;=0,其它.0≤x≤2,0≤y≤4.非零定义域是一个矩形.(X>Y)是矩形中的下三角形,面积为总面积的1/4.所以,P(X>Y)=1/4.2.f(x)

设二维随机变量(X,Y)在区域D上服从均匀分布,其中D:0

因为二维随机变量(X,Y)在区域D上服从均匀分布,所以当(x,y)∈D时,概率密度f(x,y)为区域D的面积的倒数,当(x,y)不在D内时,f(x,y)为0因为D:0

设二维随机变量xy在由x轴,y轴及直线2x+y=2所围成的三角形区域d上服从均匀分布,求

两个截距分别带入x=0得到y轴截距2y=0x1所以定义域三角形面积为1f(x,y)=1在上述给定区域fX(x)=∫(0~2-2x)1dy=2-2x0

概率论和矩阵好像在矩形区域上服从均匀分布的二维连续性随机变量,是相互独立的,但是书上没有讲!自己证明不出来,但是有一种强

(1)“矩形区域上服从均匀分布”,即在矩形范围内,f(x,y)=1/S(S为矩形面积).如果X和Y分别服从均匀分布,则f(x)=1/a,f(y)=1/b(a和b分别为矩形的长和宽),所以f(x,y)=

二维连续型随机变量(X,Y)在区域D上服从均匀分布,求在X=0条件下,关于Y的条件概率密度.

学姐,你又粗现了.条件概率公式:f(x,y)/f(x)=f(y|x),令x=0,有这个公式算一下,答案立刻就出来了

设二维随机变量(X,Y)在区域G上服从均匀分布,其中G是由曲线y=x^2和y=x所围成的,求联合概率密度

本题主要考察均匀分布和定积分的知识.先画图,标出区域G,积分求出区域G的面积.所以当0

若已知二维随机变量(X,Y)在区域服从均匀分布

回答:区域D为一正方形,面积为2.故f(x,y)=1/2,x,y位于D内.于是,fX(x)=∫{-∞,∞}f(x,y)dy=1+x,x≤0;1-x,x>0.fY(y)=∫{-∞,∞}f(x,y)dx=

随机变量X,Y相互独立,且均在(0,1)上均匀分布,则D(XY)为多少?

D(X)=D(Y)=(1-0)^2/12=1/12∵X与Y相互独立∴D(XY)=D(X)D(Y)=1/144再问:这应该是算E(XY)的方法吧?再答:E(XY)=EX·EY这是不需要条件的,独立时D(

设随机变量X在(0 1)上服从均匀分布 随机变量Y在(0 2)上俯冲均匀分布 且X与Y相互独立 求Z=Y-2X的分布函数

先求fx=1fy=1/2然后根据z<-2-2≤z<00≤z<2z≥2分别进行进行积分求F(z)再根据F(z)求密度函数fz.