固定在水平地面上的光滑半球,球心O的正上方固定一小定滑轮

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/07 22:33:23
固定在水平地面上的光滑半球,球心O的正上方固定一小定滑轮
如图所示,带弧形轨道的小车放在光滑的水平地面上,车左端被固定在地面上的竖直档板挡住,已知小车的弧形轨道和水平部分在B点相

(1)木块A点无初速度释放,下滑到B点时木块速度为V1,根据动能定理:m1gh=1/2m1v^2v=2m/s(2)木块A点无初速度释放,恰好未从车上掉落,说明两者最终相对静止具有共同速度V木块与小车组

表面光滑、半径为R的半球固定在水平地面上,球心O的正上方O′处有一无摩擦定滑轮,轻质细绳两端各系一个小球挂在定滑轮上,如

先以左侧小球为研究对象,分析受力情况:重力m1g、绳子的拉力T和半球的支持力N,作出力图.由平衡条件得知,拉力T和支持力N的合力与重力mg大小相等、方向相反.设OO′=h,根据三角形相似得:Tl1=m

静止在光滑水平面上的两小车A和B,站在A车上的人通过拴在B车上的绳子水平拉B车,第一次将B车固定在地面上,第二次不固定B

对A单独分析,绳拉A的力都等于拉力F,所以两次A的运动状态是完全一样的,速度是完全一样的.但是第一次B是不动的,第二次B运动,所以第二次还对B做了功,所以人做的功W2更大,A的速度是一样的,绳子速度第

如图所示,物体A重40N,放在光滑的地面上;物体B重20N,放在A上面并用细绳沿水平方向固定在墙上,

A可以匀速拉出,说明A受力平衡.对A进行受力分析,A受到拉力F,以及AB之间的摩擦力,故摩擦力f=拉力F=8N摩擦力f=mBg×μ=20μ=8N解得μ=0.4

水平地面上固定着一辆小车,左侧靠在竖直墙壁上小车的四分之一圆弧轨道AB是光滑的,在最低点B与水平轨道BC

有个问题:小车会动吗?是不是像这样如果不动,就是说当时(B点)向心力为9mg-mg=8mg,速度就是二倍根号2gR.用mgh=1/2mv^2算出h=4R就是离B点4倍半径,答案是4R.

在光滑的水平地面上有一辆小车,动量守恒题~

很明显要选C,甲的动量方向向前,乙的动量方向向后,只有当甲乙的合动量方向向后了,为保证总动量守恒小车才能向前运动,甲的动量比乙动量小,合动量才会向后,所以选C.再问:为什么合动量向后小车向前运动??再

一半径为R的光滑半球面固定于水平地面上,今使一质量为M的物块从球面顶点几乎无初速地滑下求

第一问比较简单.a=gsinθ这个是切向加速度.法向的怎么来的在第二问说为2g第二问这么考虑球在下滑时做的圆周运动对吧当所需向心力大于其所能得到的向心力时就会.飞出去很明显向心力是由重力提供的设球表面

在光滑的水平地面上停放着小车B

(1)若用F=10N的水平力向左拉小车,求木块2s内的位移1、先判断有没有相对滑动:设AB不相对滑动整体法:F=(mA+mB)a,10N=(1+3)kg*a,a=2.5m/s^2.隔离A:不相对滑动,

1、物体M放在光滑水平地面上,其上固定有一个光滑的定滑轮,一根轻绳一端固定在墙上,水平地跨过定滑轮后与水平方向成θ角,用

力已知,那么就要求力的方向上的位移.假设力作用在绳的另一端,作用点设为A,那么A点既有水平方向的位移(跟着滑轮动),又有沿力的方向的位移(你可以画图看一下),然后将水平位移转化到沿力的方向的位移上来,

子弹与木块质量是M的木块静止在光滑水平地面上,质量为m的子弹沿水平方向射入木块中.当木块被固定在地面上时,子弹射入木块的

0.5S假设子弹初始动能E则固定时摩擦力做功损失能量为E不固定时由动量守恒知道最后末速度为初速度的0.5,算出来损失动能0.5E所以不固定时射入木块深度为0.5S

如图所示一个内壁光滑绝热的气缸固定在地面上

平均动能只和温度有关是在推导压强的微观意义时得到的结论,这个例子里,气体体积增大,对外做功,同时绝热,所以做功是靠消耗内能来完成的,内能降低,分子动能减小,温度下降.气体内能是不考虑分子势能的,内能唯

第一个固定在水平面上的光滑半球,球心O的正上方固定一个小定滑轮,细线一端拴一小球,置于半球面上的A点,另一端绕过定滑轮,

第一题:这是一个动态平衡问题,首先对小球进行受力分析,(重力,拉力,半球的支持力)其中支持力和拉力的合力与重力平衡有几何知识可知,力三角形与几何三角形OAC相似,所以FN/R=mg/OC,F/AC=m

把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射子弹时,

(1)首先要清楚你所研究的系统是哪个,由哪些物体组成的;(2)其次是要区分内力与外力.动量守恒的条件是相互作用的物体构成的系统不受外力或系统所受外力远大于内力.本题系统是枪、弹、车三者构成,故枪、弹、

如图所示,竖直放置的光滑圆轨道被固定在水平地面上,半径r=0.4m,最低点处有一小球(

.当然就是说你根本爬不到一半高,它就会沿轨道落回去.就不会脱离轨道.这类似脑筋急转弯了当然除了这种情况,也有速度达到v0使得mv0²/2=2Gr+mv1²;其中m为小球质量,v1满

光滑的半球型物体固定在水平地面上,质量为m的物块在水平力F的作用下静止在光滑的半球面上的A点,A与球心O

将力F和支持力FN正交分解,可知tanθ=G/F,sinθ=G/FN则F=G/tanθ=mg/tanθ,FN=G/sinθ=mg/sinθ.

一斜坡被两个小桩A和B固定在光滑的水平地面上,然后在斜面上放一物体,如图所示,以下判断正确的是(  )

将物体和斜面看做一个整体系统进行分析:A、若物体静止,则系统所受合力为零,即A、B均不受挤压,A错误;B、若物体匀速下滑,则系统所示合力仍为零,B不受挤压,B正确;C、若物体加速下滑,设加速度大小为a

如图甲,在水平地面上固定一倾角为θ的光滑斜面,一劲度系数为K的绝缘轻质弹簧的一端固定在斜面

W=1/2KX平方这个式子一般在解题时尽量要回避因为本题中你用它算出来的和用能量守恒定律(或是动能定理)算出来的结果一样吗?不一样!上式在定性时分析问题时可以用,但一般不用于定量计算!

如图所示,固定在水平面上的光滑半球,球心O的正上方固定一个小定滑轮C,细绳一端拴一小球,小球置于半球面上的A点,另一端绕

以A球为研究对象,分析受力情况:重力mAg,半球面的支持力N和绳子的拉力T,则半球面的支持力N和绳子的拉力T的合力F=mAg,根据△NFA∽△ACO得:FCO=TAC得:F=TAC•CO,即有:mAg

如图所示,半径为R的半圆光滑轨道固定在水平地面上.A、B点在同一竖直直线上.

(1)小球从B到C,平抛运动时间t=√2h/g=√4r/g水平速度v0=AV/t=2r/√4r/g=√rg在B点使用向心力公式mg+FN=mv0^2/rFN=mv0^2/r-mg=mrg/r-mg=0

如图所示,固定在水平面上的光滑半球,球心O的正上方固定一个小定滑轮,细绳一端拴一小球,小球置于半球面上的A点,另一端绕过

在小球被拉升的过程中对小球进行受力分析,小球受重力、半球面对小球的弹力和绳对小球的拉力,小球在三个力作用下缓慢滑向半球顶点,可视为小球在运动过程中受力平衡,即小球受重力、支持力和绳拉力的合力为0.如图