对称阵对角化为什么要正交

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/03 13:35:57
对称阵对角化为什么要正交
求一个正交的相似变换矩阵,将下列对称矩阵化为对角阵 [2,-2,0;-2,1,-2;0 -2,0]

|A-λE|=2-λ-20-21-λ-20-2-λr1+(1/2)(2-λ)r2-r30(1-λ)(2-λ)/2-2(1-λ)-21-λ-20-2-λ第1行提出(1-λ),再按第1列展开=2乘(2-λ

线性代数中对称矩阵的正交化.求正交阵P使为对角阵

求特征向量,再正交化,单位话,就得到了

实对称矩阵是否只能通过正交矩阵变换与对角矩阵合同?

当然不是了,二次型中都给了两种做法,一种就是从矩阵出发,利用正交变换化为对角阵.另外一种就是从二次型出发,利用配方法化为标准型,写成矩阵形式就是合同变换,这种变换一般都不是正交变换.

实对称矩阵对角化问题设A为3介实对称矩阵,可知存在正交阵P,使得P'-1AP=B,B为其特征值构成的对角矩阵,为什么求出

必须单位化!因为正交矩阵P是由A的特征向量构成的而矩阵P是正交矩阵的充分必要条件是它的列(行)向量组是标准正交向量组,即两两正交且长度为1.所以必须单位化.不对.单位化后得到的P才是正交矩阵.PS.用

利用正交矩阵将对称阵化为对角阵的步骤是什么?

1.求出特征多项式|A-λE|的所有根,即A的特征值2.对每个特征值λ求出(A-λE)X=0的基础解系若基础解系含有多个向量,则需对它们正交化和单位化若只含一个向量只需单位化3.用这些向量作为列向量构

请问实对称矩阵用非正交矩阵对角化,所得对角矩阵的对角元素是否是特征值?

只要是相似对角化,对角矩阵上的元素就是特征值正交对角化主要是用在二次型上,此时有Q^-1AQ=Q^TAQ

将实对称矩阵化为对角矩阵必须用正交矩阵吗?

作为实对称矩阵既可以用正交矩阵相似对角化,也可以用可逆矩阵相似对角化.在考题中具体用哪一种题目都有具体要求,LZ可以翻阅历年真题或全书里的习题印证一下.相对来说,可逆矩阵相似对角化较为简单,只需把特征

实对称矩阵化为对角矩阵时

可以的,对角矩阵不唯一.也就是说标准型不唯一.

线性代数,施密特正交化,课本有说,正交矩阵化实对称矩阵A为对角矩阵步骤:

属于不同特征值的特征向量是正交的,但如果一个特征值的重数k>1,那么属于这个特征值的线性无关的特征向量有k个,这k个特征向量不一定正交,需要对它们正交化.

线性代数求一个正交的相似变化,将对称矩阵A转化为对角矩阵.

|A-λE|=2-λ-20-21-λ-20-2-λr1+(1/2)(2-λ)r2-r3(只能尝试这样,-r3是后来发现正好凑出(1-λ)公因子)0(1-λ)(2-λ)/2-2(1-λ)-21-λ-20

P^(T)AP=B,其中A是对称矩阵,B是对角矩阵.请问当B满足什么条件时,P是正交矩阵.

你是在反向考虑二次型的正交对角化?还是正着来吧.反着来情况复杂呢...A是实对称时,存在正交矩阵P,使P^TAP=对角矩阵B,B的主对角线上元素为A的特征值

对实对称矩阵进行正交相似对角化的 正交阵 是否唯一?除了施密特正交化法,还有什么正交化法?

不唯一,比如三阶正交阵中,将第一列与第三列交换后,仍可相似对角化,只不过对角矩阵中特征值顺序变了变位置.还有可能由于正交化的步骤不同,使得正交阵不同.施密特正交化总的来说还是有些麻烦的,如果是做正交阵

求一个正交的相似变换矩阵,将对称阵化为对角阵!为什么我算出的答案和标答不一样

单特征值对应的特征向量在不计倍数的情况下唯一但是重特征值对应的特征向量不唯一,因为特征子空间的正交基选取方式不唯一只需要验证Q'Q=I和Q'AQ=D即可,不必和答案一致

试求一个正交的相似变换矩阵P,将已知的3阶对称阵A化为对角阵

把λ=1代入方程组(A-λE)X=0中,得到该方程组的系数矩阵为12-212-224-4→000-2-44000所以,这时,方程组与方程x1+2x2-2x3=0(x2,x3为自由未知量)同解,因此,令

线性代数,试求一个正交相似变换矩阵,将下列对称阵化为对角阵 2 2 -2 2 5

|A-λE|=2-λ2-225-λ-4-2-45-λr3+r22-λ2-225-λ-401-λ1-λc2-c32-λ4-229-λ-4001-λ=(1-λ)[(2-λ)(9-λ)-8](按第3行展开,

已知实对称矩阵A=(2 1 1,1 2 1,1 1 2),求正交阵和对角阵

设此矩阵A的特征值为λ则行列式|A-λE|=2-λ1112-λ1112-λ第1行减去第2行=1-λλ-1012-λ1112-λ第2列加上第1列=1-λ0013-λ1122-λ按第1行展开=(1-λ)(