已知函数d(x)=lg(x a x-2),其中a是大于0的正数

来源:学生作业帮助网 编辑:作业帮 时间:2024/04/28 18:03:33
已知函数d(x)=lg(x a x-2),其中a是大于0的正数
已知函数f(x)=lg(1-x)-lg(1+x)求 奇偶性 单调性

1-x>0且1+x>0;定义域:x∈(-1,1)f(x)=lg(1-x)-lg(1+x)=lg[(1-x)/(1+x)](1)f(-x)=lg[(1+x)/(1-x)]=-lg[(1-x)/(1+x)

已知函数f(x)=1/2[lg(kx)],g(x)=lg(x+1).

f-g的定义域为f与g的定义域的交集,易得f的定义域为{x>0},g为{x>-1}交集为{x>0}f=g我们得到lg[(kx)^(1/2)]=lg(x+1)又因为lg函数onetoone(一一对应)所

已知函数f(x)=lg(3+x)+lg(3-x) 求它的单调性

答:f(x)=lg(3+x)+lg(3-x),-30的单调递减区间[0,3)就是f(x)的单调减区间

已知函数f(x)=lnx+1−xax,其中a为大于零的常数.

f′(x)=ax−1ax2(x>0),(1)由已知,得f′(x)≥0在[1,+∞)上恒成立,即a≥1x在[1,+∞)上恒成立,又∵当x∈[1,+∞)时,1x≤1,∴a≥1,即a的取值范围为[1,+∞)

已知函数f(x)=lg|x|.

(1)对于函数f(x)=lg|x|,它的定义域为{x|x≠0},关于原点对称,再根据f(-x)=lg|-x|=lg|x|=f(x),可得函数为偶函数.(2)先作出函数在(0,+∞)上的图象,再把所得图

已知函数f(x)=lg(1+x)+lg(1-x).

(1)要使函数f(x)有意义,须满足1+x>01−x>0,解得-1<x<1,∴函数f(x)的定义域为(-1,1);(2)由(1)知函数定义域为(-1,1),关于原点对称,对于任意x∈(-1,1),有-

已知函数f(x)=lg(2+x)+lg(2-x).

(1)x须满足2+x>02−x>0,∴-2<x<2,∴所求函数的定义域为(-2,2)(2)由于-2<x<2,∴f(x)=lg(4-x2),而g(x)=10f(x)+3x,g(x)=-x2+3x+4(-

已知函数f(x-3)=lg(x/x-6)

令t=x-3,则x=t+3,代入f(t)=lg[(t+3)/(t-3)]把t换成xf(x)=lg[(x+3)/(x-3)],这是解析式.f(x)=lg[(x+3)/(x-3)](x+3)(x-3)>0

已知函数f(x)=lg(x+1),g(x)=2lg(2x+a),

(1)f(x)=lg(x+1),g(x)=2lg(2x-1)F(x)=lg(x+1)+2lg(2x-1)那么x+1>0,2x-1>0,得x>1/2(2)2f(x)≤g(x)有lg(x+1)≤lg(2x

(2012•信阳模拟)已知函数f(x)=1−xax+lnx.

(1)∵f(x)=1−xax+lnx∴f′(x)=ax−1ax2(a>0)∵函数f(x)在[1,+∞)上为增函数∴f′(x)=ax−1ax2≥0对x∈[1,+∞)恒成立,∴ax-1≥0对x∈[1,+∞

已知函数f(x)=lg(x+1),g(x)=2lg(2x+1).

(1)原不等式等价于x+1>02x1>0x+1≤(2x1)2即x>124x25x≥0,即x>12x≤0或x≥54∴x≥54,所以原不等式的解集为{x|x≥54}(2)由题意可知x∈[0,1]时,f(x

已知函数f(x)=1/2lg(kx),g(x)=lg(x+1).

1,当k>0时,x>0且x+1>0,得x>0当k

已知函数f(x)=lg(1+x)-lg(1-x)

f(x)>0可以化为lg(1+x)>lg(1-x),所以1+x>1-x>0,由1+x>1-x得x>0;由1-x>0得x取交集,得0

已知函数f(x)=lg(1-x)-lg(1+x).

(1)1-x>0,1+x>0,所以-1

已知函数f(x)=lg(3+x)+lg(3-x).

(1)依题意有3+x>03−x>0,解得-3<x<3,所以函数f(x)的定义域是{x|-3<x<3}.(2)由(1)知f(x)定义域关于原点对称,∵f(x)=lg(3+x)+lg(3-x)=lg(9-

已知函数f(x)=xax+b

f(x)=xax+b=x,整理得ax2+(b-1)x=0,有唯一解∴△=(b-1)2=0①f(2)=22a+b=1,②①②联立方程求得a=12,b=1∴f(x)=2xx+2f(-3)=6,∴f[f(-

已知函数f(x)=lg(x+a/x-2)

函数y=x+a/x≥2√a,a∈(0,+∞),并且此函数有一个重要性质:在(0,√a]上单调递减,在[√a,+∞)上单调递增.(这个性质的证明比较简单,你自己证)因此,若04,最小值t(a)=f(√a

已知函数f(x)=lg(x+1),g(x)=2lg(2x+a)

(1)当a=-1时,求函数F(x)=f(x)+g(x)的定义域f(x)=lg(x+1),g(x)=2lg(2x-1)F(x)=lg(x+1)+2lg(2x-1)那么x+1>0,2x-1>0,得x>1/

已知函数f(x)=1−xax+lnx.

(1)当a=1时,f(x)=1x+lnx−1,f′(x)=−1x2+1x=x−1x2(x>0),令f′(x)=0得x=1.f′(x)<0得0<x<1,f′(x)>0得1<x,∴f(x)在(0,1)上单

已知函数f(x)=lg(3+x)+lg(3-x)

答:f(x)=lg(3+x)+lg(3-x)1)定义域满足:3+x>03-x>0解得:-3