找一根轻杆一端固定质量为m的小球以轻杆另一端为圆心o

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/02 01:37:21
找一根轻杆一端固定质量为m的小球以轻杆另一端为圆心o
一轻弹簧一端固定,一端系一质量为m的小球甲,同时用轻绳把质量也为m的小球乙相连

对于乙,设绳子的弹力为N,剪断之前N=mg;剪断之后,N为零,只受重力作用,于是加速度是g=9.8,方向竖直向下.对于甲,剪断之前,其受到平衡,设弹簧弹力是F,则受力平衡为F=mg+N=2mg;剪断之

如图所示,质量均为M的木块A、B并排放在光滑水平面上,A上固定一根轻质细杆,轻杆上端的小钉(质量不计)O上系一长度为L的

mgl=0.5m*v1^2+M*v2^2mv1=2Mv2mv1-Mv2=(M+m)vEp=mgl-0.5M*v2^2-0.5(M+m)v^2=mgh其中h是m相对与0势能面的高度下边就是cos所求角=

长为L的轻杆一端固定一质量为m的小球,另一端可绕固定轴在竖直平面内自由转动.求

1、最高点时候小球对杆是只有重力的作用就是mG的力2、根号下GL/2

19、如图所示,质量均为M=2m的木块A、B并排放在光滑水平面上,A上固定一根轻质细杆,轻杆上端的小钉(质量不计)O上系

看不到图,只能猜测:小球自B-A方向释放,把A和小球作为一个系统时,可以推出,A推动B向B的方向运动,随着小球速度越来越快,A对B的推力越来越大,当小球到最低点时,AB运动速度最大,此后,AB分离.1

如图所示,轻杆AB下端固定在竖直墙上,上端有一光滑的轻质小滑轮,一根细绳一端C系在墙上,绕过滑轮另一端系一质量为m的物体

由于绳子的拉力与重力大小相等,由平衡条件得知,轻杆的支持力N与T、G的合力大小相等、方向相反,则轻杆必在T、G的角平分线上,当将C点沿墙稍上移一些,系统又处于静止状态时,根据对称性,可知,T、G夹角增

内壁光滑的环形凹槽半径为R,固定在竖直平面内,一根长度为 R的轻杆,一端固定有质量m的小球甲,另一端固定有质量为2m的小

这个题选AD根据机械能守恒:甲在向下滑动的过程中势能减小,而同时乙向上运动,势能增加.一开始甲直线向下运动,乙水平运动,所以甲的势能减少量大于乙的势能增加量.甲势能的减小量-乙势能增加量=甲、乙的动能

如图所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的环,环套在竖直固定的光滑直杆上,光滑定滑轮与直杆

只看到D选项,那么下面就对D选项的正误作出分析.  将环和重物作为一个系统,显然整个系统满足机械能守恒.在初状态:环在A处,重物在在最低处,它们的速度都为0.在末状态:环在最低处(设环最大下滑距离是H

如图所示,一长为L的轻杆一端固定在光滑铰链上,另一端固定在一质量为m的小球,一水平向右

先求拉力F的大小.根据力矩平衡,F•L/2•sin60•=mgLcos60°,得F=2根号3mg/3再求速度v=ω•L/2再求力与速度的夹角θ=30°,

如图所示,现有一根长L=1m的不可伸长的轻绳,其一端固定于O点,另一端系着质量m=0.5kg的小球(可视为质点),将小球

(1)要使小球在竖直面内能够做完整的圆周运动,在最高点时至少应该是重力作为所需要的向心力,所以由mg=mv02L得V0=gL=10m/s(2)因为v1>V0,故绳中有张力,由牛顿第二定律得,T+mg=

如图所示,将质量为2m的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m的环,环套在竖直固定的光滑直杆上,光滑的轻小定滑轮

解题思路:(1)在分析重物上升高度时,要注意利用绳不变和几何关系;(2)绳子虽然对重物和环均做功,但做功的代数和为零,所以系统机械守恒。解题过程:解析:开始定滑轮左侧绳长为d,当环下降高度为d时,根据

一长为L的轻杆,一端固定一质量为M的小球,另一端套在固定的水平光滑轴上,小球在竖直平面内做完整的圆周运动,且在最高点时小

1.因为小球在最高点时小球对杆的作用力为拉力所以当最高点时小球对杆的作用力为零时,小球在最低点的速度V最小.在最高点时:小球只受重力,所以Mg=MVo方/L由动能定理得:MgH=MV方/2-MVo方/

一根劲度系数为k=100N/m的轻弹簧原长0.1m,一端固定一个质量为0.6Kg的小球,另一端固定在桌面上的O点,使小球

设转动时弹簧的长度为L,则弹簧形变量为:x=L-0.1,由胡克定律得:F=kx①球做匀速圆周运动时需要的向心力由弹簧的弹力提供,F=mrw2②由①②代入数据得:100(L-0.1)=0.6×L×102

向心力圆周运动长为R的轻杆一端固定一个质量为M的小球,以另一端为固定转轴,使之在竖直平面内做圆周运动,求以下两种情况,小

1.根据牛顿第三定律知,杆对球的支持力也是0.5Mg,Mg–0.5Mg=Mυ^2/R得小球在最高点的速度υ=根号(0.5gR)2.根据牛顿第三定律知,杆对球的拉力也是0.5Mg,Mg+0.5Mg=Mυ

长度为L的轻杆,一端系有一质量为m的小球,另一端固定于O点,小球以O点为圆心在竖直

最小速度的计算是,由于轻杆可以提供向上的推力,当推力F=mg时,mg-F=m*Vmin^2/L,Vmin=0,重力和轻杆提供向心力由F+mg=m*V^2/L,以及mg-F=m*V^2/L得到F=0

找一根轻杆,一端固定质量为m的小球.以轻杆另一端为圆心O,使小球在竖直平面内做圆周运动.求:小球做圆周运动时到达最高点的

因为是杆,所以只要球有速度就能继续运动,因此,小球到达最高点时的最小速度是0,从向心力公式可知,在最高点处向心力为0,所以杆对小球的作用力F=mg.

如图所示,一根不可伸长的轻质细绳的一端固定于o点,另一段栓有一质量为m的小球

小球从A到C做自由落体运动下落高度易算出为绳长,设为L机械能守恒:MgL=mV²/2得:v=√2gL圆的切向分量:V切=Vcos30°圆的径向分量:V径=Vsin30°绳再次伸直时,V径全部

长度L=0.5M的轻杆,一端固定质量为M=1.0Kg的小球,另一端固定在转轴O上,小球绕轴在水平面上匀速转动,轻杆每隔0

因为小球有重力,所以杆并不是水平的,是倾斜的,因此,杆长L不是球做圆周运动的半径设杆与水平方向夹角为θ,球做圆周运动的半径为R因此有R=L*cosθ球运动角速度ω=(π/6)/0.1=5π/3rad/

长度为L=0.5m的轻杆,一端固定质量为m=1.0kg的小球,另一端固定在转动轴O上,小球绕轴在水平面上匀速转动,已知小

向心加速度A=RW^2(R,W分别为圆周运动的半径与角速度)由题中可知,R=L=0.5m那么,角速度W=5.2345,那么时间为π/6除以角速度W,等于0.1秒