柯西收敛准则 sin1 1! sin2 2! sin3 3!

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/14 06:48:09
柯西收敛准则 sin1 1! sin2 2! sin3 3!
由级数柯西收敛准则判断1-1/2+1/4-1/6+1/8+^敛散性习题

由无穷级数的知识知这个级数是收敛的,下面用柯西准则证明.柯西准则是说,对任意ε>0,存在N使得n>N时,对任意的n和p,有|∑an|

由级数柯西收敛准则判断下列级数的敛散性.

关键是下面的不等式:  若p是奇数,有   |∑(k=1~p)[(-1)^(n+k-1)]/(n+k)|=1/(n+1)-[1/(n+2)-1/(n+3)]-…-[1/(n+p-1)-1/(n+p)]

用柯西准则证明级数收敛

这个级数一般不采用柯西准则,用比值判别法合适:由    lim(n→∞){[10^(n+1)]/[(n+1)!]}/(10^n/n!)=lim(n→∞)[10/(n+1)]=0根据比值判别法得知该级数

柯西收敛准则:limf(x) lim下面是x趋向于a- 叙述这个的Cauchy收敛准则,并证明其必要性!

极限lim(x→a-)f(x)存在的充分必要条件为对任意ε>0,存在δ>0,使得对任意x'、x"∈U°-(a,δ),都有|f(x')-f(x")|<ε.必要性的证明:设极限lim(x→a-)f(x)存

什么是单调有界收敛准则

高等数学是大学的一门课程,大部分专业都要学,具体包括函数导数微积分空间解析几何重积分,级数等;他是理工科的基础知识,很多学科都要用到它单调有界收敛准则是如果数列不仅有界且单调,那么这个数列一定收敛

应用柯西收敛准则,证明下面的数列收敛

|a(n+p)-a(n)|=1/(n+1)^2+...+1/(n+p)^2

关于柯西收敛准则证明的问题.

不可以,首先柯西准则中说"使得任意n,m>N时",是指对每一个m和n都成立,你设m=n+1的话,就限定了m和n之间的关系,而这个关系在准则的条件里是找不到的,你这样做是把准则的条件加强了,通常合理的做

如何利用柯西收敛准则证明单调有界数列极限存在

不妨设数列单调增,因为有上界所以有上确界,设为A.则an0,存在aN>A-§,则由an单调增知,对任意的n,m>N,有A>an>A-§,A>am>A-§.又因为从而有|an-am|

应用柯西收敛准则证明数列{an}收敛,

根据柯西收敛准则,只需证明|a(n+p)-an|

莱布尼茨准则判断的收敛级数都是条件收敛吗

这个不一定,比如说,(-1)^n/n与(-1)^n/n^2,前一个条件收敛,后一个绝对收敛!但是一般而言,当需要判断交错级数的收敛性时,先看是否绝对收敛,利用正项级数收敛的判断方法;如果不行,再用莱布

关于函数极限的柯西收敛准则的证明问题

不行X是根据ε定的可以认识是ε的函数X(ε)所以你这里任意的ε那么x2=X(ε)+1不是一个定值所以怎么能取极限呀?

柯西收敛准则证明以下数列收敛:

没细想但是第二个比较好做把分母都进行放缩让n2

级数 柯西收敛准则∞ ∑ ( 1/(2n+1)+1/(2n+2) )n=0由级数柯西收敛准则判断敛散性?

判别级数   ∑[1/(2n+1)+1/(2n+2)]的敛散性用不着柯西收敛准则,用比较判别法足矣:因   lim(n→∞)[1/(2n+1)+1/(2n+2)]/(1/n)  =lim(n→∞)[1

两道级数的柯西收敛准则证明

首先,要搞清楚Cauchy准则的正反叙述:  正:级数∑u(n)收敛对任意ε>0,存在N,使对任意n>N及任意正整数p,有∑(1≤k≤p)u(n+k)  反:级数∑u(n)发散对某ε0>0,及任意N,

瑕积分怎么判断收敛?比如 ∫a→b,a是瑕点的话,积分收敛是趋近b的时候函数趋近0吧?书上有一个定理,柯西收敛准则,说是

瑕积分是说,在a点附近函数无界,所以需要柯西收敛准则来判定.b点不是瑕点,而且b也不是无穷,所以不要求f(x)在x->b时趋近于0.当然有时候会遇到b是无穷的情况,那需要分成两部分,一个是a到c的瑕积

什么是柯西收敛准则

“柯西收敛原理”是数学分析中的一个重要定理之一,这一原理的提出为研究数列极限和函数极限提供了新的思路和方法.  在有了极限的定义之后,为了判断具体某一数列或函数是否有极限,人们必须不断地对极限存在的充

一种证明柯西收敛准则的错误方法,

很不幸的是,你的过程都没有问题,就是最后,有|am-a(N+1)|0,存在N∈N*,使得任意n>N,有|an-c|

柯西收敛准则 求柯西收敛准则的具体意义和实例啊.写的具体点.实例中的思想.

定理叙述:数列{xn}有极限的充要条件是:对任意给定的ε>0,有一正整数N,当m,n>N时,有|xn-xm|0,有Z属于实数,当x,y>Z时,有|f(x)-f(y)|n|xn-xm|=|[(-1)^(