级数2n-1 2^n的敛散性

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/02 11:12:09
级数2n-1 2^n的敛散性
级数1/n(n+1)的敛散性?

楼主的做法是:1/n(n+1)=1/n-1/(n+1)

判别级数∑(n+1)/2^n的敛散性

利用比值判别法可判别该级数收敛.为求和,作幂级数   f(x)=∑{n>=0}(n+1)x^n,|x|=0}(n+1)∫[0,x](t^n)dt  =∑{n>=0}x^(n+1)  =1/(1-x)-

判断级数 ∑ (sin n)/n^2的敛散性

很简单(sinn)/n^2≤1/n^2因为|sinn|≤1∑1/n^2绝对收敛,所以原级数也绝对收敛

怎么判断级数 n/2n-1 的敛散性

Un=n/(2n-1)lim(n→∞)Un=(1/n)/[2-(1/n)]=1/2即n→∞时数列有极限1/2所以级数n/(2n-1)收敛您的采纳是我前进的动力~

级数 lnn/n!的敛散性

1.比较法lnn/n!inf}1/(n+1)*lim{n->inf}ln(n+1)/lnn=0*1=0

级数lnn /n 的敛散性

首先考察它对应的正项级数∑lnn/n当n>3时,lnn/n>1/n级数1/n发散又由于有限项不影响级数的敛散性因此不可能绝对收敛然后考察∑(-1)^n*lnn/n设f(x)=lnx/x可得出f(x)单

交错级数级数lnn /n 的敛散性?

根据莱布尼兹判别法,要证两点:1、通项n充分大以后,un单调递减2、n趋于无穷时,un极限为0下面先证1.un>u(n+1).(1)lnn/n>ln(n+1)/(n+1)(n+1)lnn>nln(n+

级数n^(1/n)-1的敛散性

只要用导数证明存在一个M,使得x>M时,y=x^(1/x)-1单调递减就行了,那么存在一个N,使得n>N时,an单调递减数列,即存在一个N,使得n>N时,lim[a(n+1)/an]e时,y'=g'N

级数(1/n) × sin(πn/2)的敛散性

该级数实为1,0,-1/3,0,1/5,0,-1/7,0,……,1/4t,0,-1/(4t+2),0,……我们将1/4t,0,-1/(4t+2),0的和组成一项有an=1/4n-1/(4n+2)=1/

级数ln n/n^2的收敛性

∵limn->∞时,lnn/n²~1/2n²∵1/n²收敛∴lnn/n²收敛

判别级数∑(-1)^n*(lnn)^2/n的敛散性

/>lim(n->∞)(lnn)^2/n=0f(x)=(lnx)²/xf'(x)=[2lnx-(lnx)²]/x²=lnx(2-lnx)/x²当x

求级数lnn/(n^2)的敛散性

(lnn/n^2)/(1/n^(3/2))=lnn/n^(1/2),用罗必达法则,该式趋于0.因级数1/n^(3/2)收敛,由比较判别法,原级数收敛.再问:那为什么不可以这样呢?(lnn/n^2)/(

求级数2n-1/3^n的敛散性

再问:再问:这个呢,结果为一再答:通项极限1,所以发散再问:什么意思?再答:通项极限=0是收敛的必要条件,现在通项的极限=1,所以必然发散再答:不需要用其他判敛法再答:再问:ok再答:判敛第一步,初步

判断级数∑2^n /n^n (n=1到∞)的敛散性

根据比值判断法,(n+1)项/n项以n趋近于无穷大的比值为1,所以级数可能收敛也可能发散

判断级数(e^n)*(n!)/(n^n)的敛散性

比值法: 发散我发现网上已经有很多回答了http://iask.sina.com.cn/b/14827620.htmlhttp://learning.wenda.sogou.com/ques

判断级数 3^n*n!/n^n 的敛散性

对于这个级数,首先观察进行初步估计;可以尝试采用夹逼准则,发现没有办法计算.我们发现用an+1/an可以消去很多项,使得计算成为可能.那我们便作商,进行比值判别法.an+1/an=3[n/(n+1)]

几道级数的问题级数n!/n^n的敛散性,并证明级数2^n*n!/n^n的敛散性,并证明幂级数n!*x^n/n^n的收敛半

a(n)=n!/n^na(n+1)/a(n)=(n+1)!/(n+1)^(n+1)*n^n/n!=(n+1)n^n/(n+1)^(n+1)=[n/(n+1)]^n=1/[1+1/n]^nlim_{n-

判定级数∑(1,+∞)n/2^n的敛散性

比值判别法lim[u(n+1)/u(n)]=lim[(n+1)/2^(n+1)/(n/2^n)]=1/2<1所以,级数收敛.

判别级数敛散性 (n^n)/(n!)^2

令a(n)=(n^n)/(n!)^2,则a(n+1)=[(n+1)^(n+1)]/[(n+1)!]^2;lim(n→+∞)a(n+1)/a(n)=lim(n→+∞){(n+1)(n+1)...(n+1