若a是正交矩阵A的特征值,则1 a也是A的特征值

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/14 02:06:06
若a是正交矩阵A的特征值,则1 a也是A的特征值
设A是正交矩阵,绝对值A=-1,证明-1是A的特征值.

正交矩阵是实矩阵.①.它的特征值的模都是1.②.它的特征值除±1外,一定是成对出现的共轭虚数(特征方程为实系数).每一对之积为1(模平方).注意|A|=全体特征值的积.而|A|=-1.如果A没有实特征

线性代数 矩阵证明题已知A为正交阵,且|A|=-1,证明-1是A的一个特征值.(过程,快点啊!)

这题的关键是证明:|A+E|=0证明:因为A是正交阵,所以AA'=E所以|A'||A+E|=|E+A'|又|A'|=|A|=-1所以|A+E|=-|E+A'|又|A+E|=|(A+E)'|=|E+A'

求证 正交矩阵的特征值只能是1或-1

证:设A是正交矩阵,λ是A的特征值,α是A的属于λ的特征向量则A^TA=E(E单位矩阵),Aα=λα,α≠0考虑向量λα与λα的内积.一方面,(λα,λα)=λ^2(α,α).另一方面,(λα,λα)

设2是矩阵A的特征值,若1A1=4,证明2也是矩阵A*的特征值

2是矩阵A的特征值,则(1/2)是矩阵A^(-1)的特征值.A*=|A|A^(-1)=4A^(-1),则4*(1/2)是矩阵A*的特征值,即2也是矩阵A*的特征值.

1.若A是正交阵, 证明: A是可逆且A^(-1)也是正交矩阵.

因为A正交,所以AA^T=E两边取行列式得|A||A^T|=|E|所以|A|^2=1所以|A|=1or-1故A可逆.再由AA^T=E,得A^-1=A^T所以(A^-1)(A^-1)^T=(A^T)(A

证明若A是正交矩阵,则A的行列式等于正负1

A是正交矩阵即:|A乘A转置矩阵=单位矩阵E|A||A|=1|A|2=1|A|=正负1

设A为奇数阶正交矩阵,且detA=-1,则A必有哪个特征值?A的特征值的模为多少?

当|A|=-1时.|A+E|=|A+AA'|=|A(E+A')|=|A||E+A'|=|A||(E+A)'|=-|E+A|.所以|A+E|=0.所以-1是A的一个特征值

矩阵A^2=E,且有不同的特征值,不同特征值的特征向量正交,证明A为正交阵

A的特征值只能是1或-1,注意到(A+E)(E-A)=0,线代数上应该证明此时有r(A+E)+r(A-E)=n,也就是Ax=x的解空间和Ax=-x的解空间维数之和是n.在Ax=x中取标准正交向量组q1

设λ是n阶矩阵A的一个特征值,求证:若A可逆,则1/λ是n阶矩阵A-1;的一个特征值

λ是矩阵A的一个特征值,则存在非零向量X,AX=λX,故(1/λ)X=A^-1X,即A^-1X=(1/λ)X,1/λ是n阶矩阵A-1的一个特征值

线性代数A是实正交矩阵,-1是A的特征值,证明A是第二类正交矩阵

结论是错误的.例如矩阵A=diag(1,-1,-1)是实正交矩阵,-1是A的特征值,但|A|=1,故A不是第二类正交矩阵.

设A为正交矩阵,且|A|=-1,证明-1是A的特征值 关于这个问题,能解释清楚一点么?

A是正交矩阵那么A*A‘=E|-E-A|=|E+A|=|A*A'+A*E|=|A*(A'+E)|=|A|*|A'+E|=-|A'+E|而|E+A|=|E'+A|是很容易证的所以|E+A|=0即-1是A

设A为奇数阶正交矩阵,det(A)=1,证明1是A的一个特征值

反证法:因为正交阵特征值的模均为1,且复特征值成对出现,所以若1不是A的特征值,那么A的特征值只有-1,以及成对出现的复特征值.注意到A是奇数阶的,所以除去成对出现的复特征值后必有奇数个特征值-1.这

正交矩阵的性质A是n阶正交矩阵,证明A*也是正交矩阵结果如下:由于A为正交矩阵,所以|A|^2=1,A^-1也是正交矩阵

|A|表示A的行列式,行列式是能计算出来的,是一个具体的数哦,所以这里|A|是当一个常数一样得提出来做乘积,当然不需要做转置.

设矩阵A=[422;242;224],1、求矩阵A的所有特征值与特征向量;2、求正交矩阵P,使得P-1AP为对角矩阵.

|A-λE|=(8-λ)(2-λ)^2A的特征值为2,2,8(A-2E)x=0的正交的基础解系为a1=(1,-1,0)^T,a2=(1,1,-2)^T所以属于特征值2的全部特征值为k1a1+k2a2,

求证a于b正交设K1=1,k2=2是正交矩阵A的两个特征值,a,b是对应的特征向量.证明?:a,b 正交.

由已知,Aa=a,Ab=2b又因为A是正交矩阵所以(a,b)=A(a,b)=(Aa,Ab)=(a,2b)=2(a,b)所以(a,b)=0即a,b正交.再问:由已知,Aa=a,Ab=2b又因为A是正交矩

请问设A是正交矩阵,|A|=1,证明1一定是A的特征值吗?还有可能有特征值1和共轭虚数吗?

带入验证.因为det(I-A)=det((A(AT))-A)=det(A(AT-I))=det(AT-I)=det(A-I)=-det(I-A)(说明AT表示A的转置),所以det(I-A)=0,所以

A是行列式等于-1的正交矩阵,则( )一定是A的特征值

-1若矩阵A的特征值为λ,则A的转置的特征值也为λ,而A的逆的特征值为1/λ.矩阵的转置即为矩阵的逆,即:λ=1/λ,所以:λ=1或-1.即正交矩阵的特征值为1或-1又行列式等于-1,所以-1一定是A

正交矩阵的特征值只能是1或-1

证:设A是正交矩阵,λ是A的特征值,α是A的属于λ的特征向量则A^TA=E(E单位矩阵),Aα=λα,α≠0考虑向量λα与λα的内积.一方面,(λα,λα)=λ^2(α,α).另一方面,(λα,λα)