设A是4阶矩阵,其特征值分别是1,2,3,4,则A-5I行列式

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/06 04:15:44
设A是4阶矩阵,其特征值分别是1,2,3,4,则A-5I行列式
设A,B 分别是m*n,n*m矩阵,证明:AB和BA有相同的非零特征值.

如果a是AB的非零特征值,则存在非零向量x,使得 ABx=ax **.而Bx不等于零,否则若Bx=0有ax=0,与a非零和x非零矛盾.记:Bx=y.由**左乘B,可知BAy=ay.因y为非零向量,所以

设X是矩阵A的特征值,则A的逆的特征值?A的转置的特征值?

设a是A的一个特征向量,又X是A的特征值,则有:Aa=Xa,两边同时乘以A的逆矩阵,则:A^(-1)*Aa=A^(-1)*Xa,即a=A^(-1)*Xa,变换位置得:A^(-1)a=1/X*a,由此可

设3阶实对称矩阵A的特征值分别是1,2,-2,a=(1,-1,1)'是A属于特征值1的一个特征向量,如何求出另外2个特征

很简单,实对称矩阵的不同的特征值的特征向量正交,也就是说你假设另外两个特征向量分别为(x1,x2,x3)和(y1,y2,y3),则1*x1+-1*x2+1*x3=0,1*y1+-1*y2+1*y3=0

设3阶实对称阵A的特征值是1,2,3;矩阵A的对应与特征值1,2的特征向量分别为(-1,-1,1)T,(1,-2,-1)

由1及2的特征向量,根据实对称阵特征向量正交,求出3所对应的特征向量,3个特征向量依次排列构成相似变换矩阵p,再由PaP-1=A,可得到A,其中P-1是P的逆阵,a是有3个特征值依次排列组成的对角阵.

设2是矩阵A的特征值,若|A|=4,证明2也是矩阵A*的特征值

由公式AA*=|A|E可以知道,AA*=4E,2是矩阵A的特征值,设特征向量为a那么Aa=2a所以A*Aa=2A*a代入AA*=4E,得到4a=2A*a即A*a=2a那么显然由特征值的定义可以知道,2

设λ=2是可逆矩阵A的一个特征值,则矩阵(13

设α是A的特征值2的特征向量,则Aα=2α又A可逆∴α=2A-1α,即A−1α=12α∴(13A)−1α=3A−1α=32α∴32是矩阵(13A)−1的一个特征值.

设2是矩阵A的特征值,若1A1=4,证明2也是矩阵A*的特征值

2是矩阵A的特征值,则(1/2)是矩阵A^(-1)的特征值.A*=|A|A^(-1)=4A^(-1),则4*(1/2)是矩阵A*的特征值,即2也是矩阵A*的特征值.

设n阶可逆矩阵A的一个特征值是-3,则矩阵(1/3*A2)-1 必有一个特征值为_________.

有如下定理:若可逆阵A有特征值k(k一定不为0)则A逆有特征值1/k,A^2特征值k^2.(mA)有特征值mk.(以上结论容易证明)由此,本题:A的特征值-3,A^2的特征值9,1/3*A^2的特征值

设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是(  )

∵A为n阶可逆矩阵,λ是A的特征值,∴A的行列式值不为0,且Ax=λx⇒A*(Ax)=A*(λx)⇒|A|x=λ(A*x)⇒A*x=.A.λX,故选:B.

设λ=2是可逆矩阵A的一个特征值,则矩阵(A2)-1必有一个特征值等于?

如果(A2)-1意思是(A^2)^-1,则矩阵(A2)-1必有一个特征值等于1/4.设X是λ=2对应的特征向量,则AX=2X,A^2X=AAX=2AX=4X,即A^2X=4X,故得(1/4)X=(A^

设A是n阶矩阵,若存在正整数k,使A的k次方为o矩阵,求证矩阵A的特征值为0

设a是A的特征值则a^k是A^k的特征值(定理)而A^k=0,零矩阵的特征值只能是0所以a^k=0所以a=0即A的特征值只能是0.

设λ是n阶矩阵A的一个特征值,求证:若A可逆,则1/λ是n阶矩阵A-1;的一个特征值

λ是矩阵A的一个特征值,则存在非零向量X,AX=λX,故(1/λ)X=A^-1X,即A^-1X=(1/λ)X,1/λ是n阶矩阵A-1的一个特征值

设入1入2 是矩阵A的两个不同的特征值,a1a2 分别属于特征值入1入2 的特征向量,证明:a1a2 线性无关

反证吧:假设线性相关,设k*a1=a2(k不等于0)入1*a1=A*a1入2*a2=A*a2=A*(k*a1)=k*(A*a1)=k*入1*a1得到a1=入2/(k*入1)*a2最初我们假设a1=a2

设A,B是n阶实矩阵,A的特征值互逆,证明矩阵AB=BA的充要条件为A的特征值都是B的特征值

只需证明:若λ是AB的特征值,则λ也是BA的特征值.分两种情况:(1)λ≠0.由λ是AB的特征值,存在非零向量x使得ABx=λx.所以BA(Bx)=B(ABx)=B(λx)=λBx,且Bx≠0(否则λ

设λ是矩阵A为的特征值,则矩阵4A^3-2A^2+3A-2E的一个特征值为

这是定理4A^3-2A^2+3A-2E的一个特征值为4λ^3-2λ^2+3λ-2.

设A为n阶反称矩阵,证明:如果 入.是矩阵A的特征值,则 -入.也是A的特征值.

由已知,|A-λE|=0又因为A^T=-A所以有|A+λE|=|(A+λE)^T|=|A^T+λE|=|-A+λE|=(-1)^n|A-λE|=0所以-λ也是A的特征值.

设A为3阶矩阵,其特征值分别为-1,2,3,对应的特征向量分别为X1,X2,X3.若P=(X1,X2,X3)

|A|=-1*2*3=-6A*的特征值为(|A|/λ):6,-3,-2对应的特征向量依然是x1,x2,x3所以(B)正确

若A是可逆矩阵,则其特征值中

既然有可逆矩阵那么|A|不等于0|A|=特征值得乘积所以无零特征值选择D

设λ是n阶矩阵A的特征值 则 是A平方的特征值

则λ^2是A平方的特征值证明:设x是A的属于特征值λ的特征向量即有Ax=λx,x≠0等式两边左乘A,得A^2x=λAx=λ^2x所以λ^2是A^2的特征值.