试求一个正交的相似变换矩阵P,将已知的3阶对称阵A化为对角阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/09 03:59:30
试求一个正交的相似变换矩阵P,将已知的3阶对称阵A化为对角阵
求一个正交的相似变换矩阵,将下列对称矩阵化为对角阵 [2,-2,0;-2,1,-2;0 -2,0]

|A-λE|=2-λ-20-21-λ-20-2-λr1+(1/2)(2-λ)r2-r30(1-λ)(2-λ)/2-2(1-λ)-21-λ-20-2-λ第1行提出(1-λ),再按第1列展开=2乘(2-λ

试求一个正交的相似变换矩阵,使下面矩阵对角化 | 2 2 -2| | 2 5 -4| |-2 -4 5|

|A-λE|=2-λ2-225-λ-4-2-45-λ=(10-λ)(1-λ)^2.A的特征值为:λ1=10,λ2=λ3=1.(A-10E)X=0的基础解系为a1=(1,2,-2)'(A-E)X=0的基

矩阵A经过正交变换变成标准型,求正交变换,

ank(A)=1是没错,但是A的特征值是11,0,0而不是7,0,0(看一下trace(A)就知道了)

设矩阵A=(上面1 0 1中0 1 1 下面1 1 2)求A的正交相似对角阵,并求出正交变换阵P.

|A-λE|=1-λ0101-λ1112-λr1-r21-λ-(1-λ)001-λ1112-λc2+c11-λ0001-λ1122-λ=(1-λ)[(1-λ)(2-λ)-2]=(1-λ)(λ^2-3λ

求相似变换矩阵P,使得|1,2,2

|A-λE|=(5-λ)(1+λ)^2.所以A的特征值为5,-1,-1(A-5E)X=0的基础解系为:a1=(1,1,1)'(A+E)X=0的基础解系为:a2=(1,-1,0)',a3=(1,0,-1

线性代数 求矩阵正交p

A的特征值为1,5,-1(A-E)x=0的基础解系为a1=(1,-1,0)^T(A-5E)x=0的基础解系为a2=(1,1,1)^T(A+E)x=0的基础解系为a3=(1,1,-2)^T单位化后构成正

求a、b的值及所用正交变换的矩阵P,详见下图.

f的矩阵为A=20000101aA相似于diag(2,b,-1),所以tr(A)=a+2=b+1detA=-2=-2b所以a=0,b=1正交矩阵P你自己做再问:大哥好人帮到底吧,成人教育的题,我都工作

线性代数:求一个正交变换

答案中的第二个正交向量是(1,-2,-5/2)我算的是(-2/5,4/5,1)这两个是差-2/5倍的两个解向量,都对.但单位化后应该相同,乘2消去分母(2,-4,-5),长度为根号(2^2+4^2+5

线性代数求一个正交的相似变化,将对称矩阵A转化为对角矩阵.

|A-λE|=2-λ-20-21-λ-20-2-λr1+(1/2)(2-λ)r2-r3(只能尝试这样,-r3是后来发现正好凑出(1-λ)公因子)0(1-λ)(2-λ)/2-2(1-λ)-21-λ-20

正交矩阵是不是单位矩阵,求正交矩阵P使A与对角矩阵相似,为什么单位化

正交矩阵不一定是单位矩阵,但单位矩阵是正交矩阵矩阵正交的充分必要条件是其列向量是标准正交向量组,故必须正交化,单位化

求一个正交的相似变换矩阵,将对称阵化为对角阵!为什么我算出的答案和标答不一样

单特征值对应的特征向量在不计倍数的情况下唯一但是重特征值对应的特征向量不唯一,因为特征子空间的正交基选取方式不唯一只需要验证Q'Q=I和Q'AQ=D即可,不必和答案一致

线代 试求一个正交的相似变换矩阵,并将对称矩阵对角化

这个写起来好麻烦啊,这个是真正的解法,但是我一直举得,求出了前两个,第三个向量,我觉得可以直接用两个向量叉乘一下得出,反正第三个向量和前两个垂直

试求一个正交的相似变换矩阵P,将已知的3阶对称阵A化为对角阵

把λ=1代入方程组(A-λE)X=0中,得到该方程组的系数矩阵为12-212-224-4→000-2-44000所以,这时,方程组与方程x1+2x2-2x3=0(x2,x3为自由未知量)同解,因此,令

对称矩阵对角化问题试求一个正交的相似变换矩阵,使下面矩阵对角化| 2 2 -2|| 2 5 -4||-2 -4 5|我先

从你得出的答案上看来你是先将a21化为0后将第一行乘2第三行乘(2-λ)再相减的不过你行列式外面忘了除2(2-λ)了所以答案不对行列式化简尽量用“1-1”或“1+1”模式不行再用“1-k”“1+k”型

线性代数求一个正交的相似变换矩阵 第5题的第二小题

5(2)A=1-2224-42-44|λE-A|[λ-1,2,-2][-2,λ-4,4][-2,4,λ-4]=(λ-1)*(λ^2-8λ)特征值:λ=0,λ=1,λ=8求对应的特征向量,再经正交化、单

求一个正交相似变换矩阵,使已知矩阵变为对角阵

是的需注意的是对角矩阵中主对角线上的元素(特征值)与正交矩阵的列(特征向量)的顺序是对应的

线性代数,试求一个正交相似变换矩阵,将下列对称阵化为对角阵 2 2 -2 2 5

|A-λE|=2-λ2-225-λ-4-2-45-λr3+r22-λ2-225-λ-401-λ1-λc2-c32-λ4-229-λ-4001-λ=(1-λ)[(2-λ)(9-λ)-8](按第3行展开,

A=(1 0 1),求A的正交相似对角阵,并求出正交变换阵P

先求A的特征值和特征向量,正交变化就是特征向量组成的矩阵,正交相似对角阵就是特征值组成的对角阵