作业帮 > 数学 > 作业

一道数学难题:求(sinx)^2 / (cosx)^3的不定积分,

来源:学生作业帮 编辑:百度作业网作业帮 分类:数学作业 时间:2024/05/06 10:39:17
一道数学难题:求(sinx)^2 / (cosx)^3的不定积分,
一道数学难题:求(sinx)^2 / (cosx)^3的不定积分,
由∫secx dx = ln|secx+tanx| + C1
故 ∫(secx)^3 dx
=∫secx dtanx
=secx·tanx -∫[(tanx)^2·secx]dx
=secx·tanx -∫{[(secx)^2 -1]·secx}dx
=secx·tanx - ∫(secx)^3 dx + ∫secx dx
=secx·tanx - ∫(secx)^3 dx + ln|secx+tanx| + C1
所以 ∫(secx)^3 dx =1/2 secx·tanx + 1/2 ln|secx+tanx| + C
∫(sinx)^2 / (cosx)^3 dx
=∫[1-(cosx)^2] / (cosx)^3 dx
=∫[(secx)^3 - secx] dx
=∫(secx)^3 dx - ∫secx dx
=1/2 secx·tanx - 1/2 ln|secx+tanx| + C