为什么行列式小于0特征值此存在小于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/16 17:23:33
为什么行列式小于0特征值此存在小于0
为什么秩小于向量组个数会是线性相关呢?是不是因为秩小于向量组不是有无穷多组解吗?行列式为0呢

向量组的秩是向量组的一个极大无关组所含向量的个数当向量组的秩等于向量组所含向量个数时,说明向量组本身就是其极大无关组,即向量组线性无关否则(向量组的秩小于向量组所含向量个数时)向量组线性相关.也可以联

矩阵A的行列式等于0,A的特征值

因为A的所有特征值的乘积等于A的行列式所以|A|=0时,A一定有特征值0.

求四阶矩阵的行列式和特征值,

把每个牲值回代就可得到特征向量.计算量太大.你自己算吧.再问:好难的说再答:计算量大,难度不大就是概念求解

设3阶方阵A的特征值为2,-1,0,求B=2A^3-5A^2+3E的特征值和B的行列式.

因为A的特征值为2,-1,0所以B的特征值为g(2),g(-1),g(0),其中g(x)=2x^3-5x^2+3即B的特征值为-1,-4,3所以|B|=-1*(-4)*3=12.

矩阵A的行列式等于0的充要条件是A的秩小于n 为什么?

1、任何方阵都可以通过初等行变换转化为上三角阵.2、上三角阵的行列式为0当且仅当主对角线上的元素中有0.3、n阶上三角阵的秩=n-主对角线上0的个数.4、初等行变换=左乘(可逆)初等矩阵.于是初等行变

[线性代数]关于特征值,求行列式的值

设s是A的特征值,x是A对应于s的特征向量,则Ax=sx(E+A+A^2)x=x+Ax+A^2x=x+sx+Asx=x+sx+s^2x=(1+s+s^2)x所以1+s+s^2是E+A+A^2的特征值由

线性代数:二阶矩阵的平方等于零,为什么他的行列式等于零,秩小于等于一?

因为0=det(A*A)=det(A)*det(A),所以det(A)=0,所以秩小于等于1.其中det()是矩阵的行列式.

设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值

证明:|A+E|=|A+AA^T|=|A(E+A^T)|=|A||(E+A)^T|=|A||A+E|所以|A+E|(1-|A|)=0因为|A|

什么是行列式的特征值?

行列式没有特征值,方阵才有特征值.方阵A的特征值指的是满足Ax=λx(x≠0)的数λ,其中x称为矩阵A的对应于特征值k的特征向量.求A的特征值的方法:解行列式|A-λE|=0,E是单位矩阵例如:A=1

1.A为三阶矩阵,满足E-A的行列式等于0,E+A的行列式等于0,3E-2A的行列式等于0求A的特征值和A的行列式.2

由于|E-A|=0,|E+A|=0,|3E-2A|=0,故可知1,-1,3/2,均为A的特征值,由于A为3阶矩阵,故A最多有3个互不相同的特征值,因此A的特征值即为1,-1,3/2,由特征值和矩阵行列

大学线性代数证明题,设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值

因为AAT=E,所以A为正交矩阵,且|A|再问:直接把A提出来,|AB|=|A||B|

设三阶矩阵A有一个特征值为1,且行列式A等于0及A的主对角线元素和为0,求A的另两个特征值!

列式A等于0,故0是A的特征值.所有特征值的和等于矩阵对角上所有元素的和.故1+0+a=0故最后一个特征值为-1

为什么矩阵的行列式等于他所有特征值的乘积

因为矩阵可以化成对角元素都是其特征值的对角矩阵,而行列式的值不变,对角矩阵的行列式就是对角元素相乘

为什么这个实对称矩阵的秩小于阶数可以推得 矩阵的行列式等于0?

关于这个我建议你应该仔细看一下矩阵秩的定义,对于3阶实对称矩阵来说,矩阵秩表示它至少有一个2阶子矩阵的行列式为0,而3阶子矩阵即矩阵本身的行列式为0再问:一下子忽略了定义。

为什么,行列式中如果有两行(列)元素成比例,则此行列式等于零.

首先提取比例系数,得到有两行相等的行列式,再根据任意交换两行或两列的顺序,行列式的值变为原来的相反数,即可推得原式为零

若3是n*n阶矩阵A的特征值,行列式|A|=2,则A的伴随矩阵的一个特征值为几?为什么?

一个特征值是2/3,分析如图.经济数学团队帮你解答,请及时采纳.

特征值计算行列式  

利用特征值的性质,A的逆的特征值等于A的特征值的倒数,所以所求的行列式的三个特征值是:4·1-1=3;4/2-1=1;4/2-1=1行列式的值等于特征值的积:所以答案等于3

行列式性质为什么行列式有两行(列)完全相同, 则此行列式等于零.我怎么想不通呢,请举个例子最好是4阶以上的.

对于任意阶的行列式,设其为|A|对于两行(列)的元素完全相同,由性质可得,行列式任意两行(列)对调,其值为相反数:|a1a2a3a4||a1a2a3a4||b1b2b3b4|=-|b1b2b3b4|(