柯西曾经证明了 被积函数不连续

来源:学生作业帮助网 编辑:作业帮 时间:2024/05/12 14:40:55
柯西曾经证明了 被积函数不连续
证明函数1/x在区间(0,1)上连续

连续的定义是,函数在某点的极限等于其实际值.设x在(0,1)之间.那么1/x在x该点的极限为1/x(该点是有值的)等于实际值,所以满足连续的定义.再问:����E-��N������ô֤�����ǵ�

问一下证明函数连续的问题

楼主,你的追问这样答:设F(x)=f(x)-f(x+a)F(0)=f(0)-f(a),F(a)=f(a)-f(2a)=f(a)-f(0)=-F(0)若F(x)恒为零,则任意x0属于[0,a]都有f(x

如何证明函数在一个点连续不连续 可导不可导

1.连续必可导可导不一定连续2.证明连续只需要证明在这一点的左右极限相等并且等于函数值3.证明可导只需要证明在这一点左右极限相等即可回答者:charleswlb-举人五级5-515:53误人子弟啊!1

证明连续性随机变量的分布函数连续

因为连续型随机变量的分布函数是其密度函数的变上限定积分,根据牛顿-莱布尼兹的原函数存在定理(微积分基本定理),就可得到其是连续函数.

证明是否存在函数,满足:“处处可导,但导函数处处不连续的”

结论是否定的.事实上,闭区间I上可导函数的导函数的连续点集必然是I上的稠密集!可参见周民强著《实变函数论》55页思考题5.大致思路如下:首先,记f_n(x)=n[f(x+1/n)-f(x)],则f_n

分段函数 间断点不连续

嗯,是这样的,都不连续怎么可能可导.

证明:在【a,b】上黎曼可积函数必存在连续点

证明:f(x)黎曼可积,则[a,b]中不连续点为一零测集,记为A,于是[a,b]-A中均为连续点,x∈[a,b]-A为连续点,即证存在点x∈【a,b】,f(x)在该点连续.回答的不详细,欢迎追问,希望

如何证明二元函数偏导函数连续

一般是分段函数,对开区间连续可导的分段可直接求出其偏导数,再对分段点用定义法求出其偏导数值或者判断其不存在.由此即可判断在分段点偏导数是否连续.

证明多元函数的连续

sin(x^2*y)/(x^2+y^2)=[sin(x^2*y)/x^2*y]*(x^2*y)/(x^2+y^2)=[sin(x^2*y)/x^2*y]*y/[1+(y/x)^2]sin(x^2*y)

零点存在定理的证明,我自己写了但是老师说不具体,定理:若函数y=f(x)在闭区间[a,b]连续,f'(x)>0或 f'(

命题3(零点定理)证法一(用区间套定理).证法二(用确界原理).证法三(用有限复盖定理).80页唯一性用反证法,证明如下:假设[a,b]内除x1外还有一点x2>x1(或x2

大学高等数学,证明函数连续.第七题

f(0-)=f(0+)=0,f(0)=0,所以连续再问:再问:我想问下那个f(x)的绝对值小于等于x的绝对值是怎么来的?再问:我有笔标了的地方再答:因为f(x)=x,这是已知,当x为任意有理数再答:不

不连续的函数一定不可导

给你随便举个函数f(x)=x假设在点x=1处为不连续点,且f(1)=2根据导数含义在x=1求导=[f(x+h)-f(x)]/h(h区域0)在x=1处f(1+h)=1+hf(1)=2=[f(x+h)-f

证明连续性有函数F如果实数X0.那么F(X)=3利用函数连续性的定义证明F在0处不连续.第一个差不多明白了。但还有一题,

lim(x→0+)F(X)=-2lim(x→0-)F(X)=3lim(x→0+)F(X)≠lim(x→0-)F(X)所以函数F(X),X=0处不连续第二个问题就是证明,对于任意n,在F(X)的任意点可

不连续的函数怎么求极限

函数在某点处是否存在极限与在这一点是否连续无关.只要看在这一点处左右极限是否都存在,且是否相等.左右极限存在且相等则在这一点处存在极限,具体求法可以具体分析:比如可用极限运算法则、两边夹法则、极限定义

牛顿莱布尼茨公式可导函数不连续的证明

连续一定有原函数,但不连续不一定没有原函数例如:f(x)=2xsin1/x-cos1/x,x不等于0;f(x)=0,x=0存在原函数,且连续可导即:F(x)=x2sin1/x,x不等于0;F(x)=0

数学求证明函数连续

第一问不证明,在非(0,0)点,f(x,y)是初等多元函数,初等多元函数在定义域内必连续第二问证明如下:x,y-->0时,令y=Kx,(k是非0常数),则f(x,y)=k^3/(1+k^2)^2这个值

一条函数的导数是连续的 可以证明这条函数是连续的吗?

可导必连续,再问:为什么再答:f'(x0)=lim[f(x)-f(x0)](/x-x0)当x---->x0时存在故f(x)-f(x0)---->0,即f(x)----->f(x0)所以这ge函数f(x

想问下如何证明在区间上可积但不连续的被积函数满足牛顿—莱布尼茨公式呢?

把积分区间分段,在每一个区间上都满足牛莱公式,那么由积分区域的可加性就可以证明了再问:话虽如此,但是表述起来觉得很困难的啊……再答:先做分点,保证每一个分割区间长度足够小(至少不会出现断点),可以保证