若n阶方程适合A^K=E,则A可对角化

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/08 05:45:17
若n阶方程适合A^K=E,则A可对角化
矩阵A^2=A,证明:(A+E)^k=E+(2^k-1)A (k∈N).

因为AE=EA,即A与E可交换所以由二项式公式有(A+E)^k=∑(0

n阶矩阵A,A^k=0,证E-A可逆,用特征值法证明.

先证A的特征值只有0;反证法:假设A有一个特征值t不等于0;那么,根据特征向量的定义,存在X不等于0,AX=tX;又A^K=0则0=(A^k)X=A^(k-1)(tX)=tA^(k-1)X=……=(t

设A为N阶方阵,满足A^K=0,证明E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1

(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^

已知a+b+c=H a+b+e=J a+d+e=K b+c+d=M c+d+e=N 求a=?b=?c=?d=?e=?方程

a+b+c=H①a+b+e=J②a+d+e=K③b+c+d=M④c+d+e=N⑤①+②+③+④+⑤:3(a+b+c+d+e)=H+J+K+M+Na+b+c+d+e=(H+J+K+M+N)/3⑥①+③-

设A为n阶实矩阵,证明:若A^k=E,则A相似于对角阵

可以用稍微初等一点的技术在复数域上上三角化总是可以的,并且特征值的次序可以任意指定那么就先上三角化到diag{A1,A2,...,Am}+N,每一块Ai都恰有一个特征值,且不同的块对应不同的特征值,N

设A为n阶矩阵,且A不是零矩阵,且存在正整数k≥2,使A^k=0,证明:E-A可逆,且(E-A)=E+A+A^2+……A

由性质直接证明因为(E-A)(E+A+A^2+……+A^(k-1))=E+A+A^2+……+A^(k-1)-A-A^2-……-A^(k-1)-A^k=E-A^k=E所以E-A可逆,且(E-A)^(-1

设A为n阶矩阵,A≠O且存在正整数k≧2,使A∧k=O.求证E-A可逆且(E-A)-¹=E+A+A²

(E-A)(E+A+A^2+...+A^k-1)=E+A+A^2+...+A^k-1-A-A^2-...-A^k-1-A^k=E所以E-A可逆,且其逆为E+A+A^2+...+A^k-1

线性代数的一道证明题A是n阶矩阵,求证,若A²=E,则r(E-A)+r(E+A)=n.

A²=EE-A^2=0所以(E-A)(E+A)=0所以有r(E-A)+R(E+A)=r(E-A+E+A)=r(2E)=n所以r(E-A)+r(E+A)=n

设A为n阶方阵,证明:(1)若A^2=A,则r(A)+r(A-E)=n (2)若A^2=E,则r(A+E)+r(A-E)

这里边用到两个结论:r(A+B)=r(A+E-A)=r(E)=n.中间等号必须成立,因此r(A)+r(A-E)=n.2、(A+E)(A-E)=0,因此n>=r(A+E)+r(A-E)=r(A+E)+r

线性代数:若n阶矩阵A满足方程A^2 2A 3E=0,则(A)^-1=?

A^2+2A+3E=0A(A+2E)=-3E(A)^-1=-(A+2E)/3运算符号不对的话,自己修正.

线性代数:若n阶矩阵A满足方程A^2+2A+3E=0,则(A+3E)^-1=?

等于-1/6(A-E)?再问:有没有详细过程,怎么最后还得加个问号~~~那是确不确定啊再答:配方原方程化为(A+3E)(A-E)+6E=0把6E放到等号那边两侧同乘-1/6就有了再问:好的,谢谢~~~

设A为n阶方阵,B为n阶可逆阵,若存在正整数k使A^k=O,则矩阵方程AX=XB仅有零解

要多说明一点,你取的k是最小的使得A^k=0的自然数k.等等-由于A^(k-1)不恒为O,所以X=O-好像有问题...我想一下.这句话应该是对的,但是我要证明的话要用到Jordan形式...(就是只有

线性代数:若n阶矩阵A满足方程A^2+2A+3E=0,则(A-2E)^-1=?

A^2+2A+3E=(A-2E)(A+4E)+11E=0即(A-2E)(A+4E)=-11E所以(A-2E)^(-1)=-1/11(A+4E)另外再说句,做这种题的技巧,就是配凑法,配成要求因式×另一

若A为n阶方阵,k为非零常数,则|kA|=?A,k|A| B,|k||A| C,(k∧n

kA,是每个元素都乘以k所以取行列式和每行都可以提取k,从而选C,(k∧n)|A|

已知n阶矩阵A满足矩阵方程A^2-2A-3E=0,且A-E可逆,求A-E的逆矩阵?

因为A^2-2A-3E=0所以A(A-E)-(A-E)-4E=0所以(A-E)^2=4E所以A-E可逆,且(A-E)^-1=(1/4)(A-E).

设A为n阶方阵,对其正整数k>1,A^k=0,证明:(E-A)^(-1)=E+A+A^2+,+A^(k-1)

由于(E+A+A^2+,+A^(k-1))(E-A)=(E+A+...+,+A^(k-1))-(A+...+,+A^k)=E-A^k=E(注意那个式子的抵消规律)所以命题成立

设a是n阶实对称矩阵,且满足A^2+2A=0,若kA+E是正定矩阵,则k的取值范围

由A^2+2a=0知道,A的特征值都是方程x^2+2x=0的根,所以A的特征值是0与-2,那么kA+E的特征值是k*0+1与k*(-2)+1,即1与1-2k,要想kA+E正定,则1-2k>0,所以k<

设A是n阶方阵,若有正整数k,使得A^k=E,证明A相似于对角矩阵

因为A^k=E所以A可逆,即A的特征根非零.如果A不可对角化,根据亚当标准型,存在两个非零向量x1,x2,及一个非零特征根a,使得:Ax2=ax2,Ax1=ax1+x2.则:A^2x1=A(ax1+x